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The locations of components in mechanical assemblies are determined by reconciling various
constraints among the components that arise from physical, geometric and kinematic relation­

ships, human factors, maintenance concerns, etc. Among them some constraints require that
particular spatial relationships between components be maintained exactly, i.e., equality con­

straints. In general the equality constraints can be expressed as systems of equations. However
the systems of equations deduced from the equality constraints are mostly ill-determined so that

special numerical attentions are required. This paper proposes a numerical treatment for

ill-determined systems in mechanical assemblies. It utilizes singular value decomposition and
Newton-Raphson methods in corporation with minimum weighted deviation criteria. The

treatment was implemented on an assembly modeler for automatic packaging task.
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1. Introduction

The process of locating components in an

available space while satisfying spatial constraints

among the components is called packaging. The
task requires extensive spatial reasoning about

geometric shapes. It is a generic design task com­

mon to many domains. It is also very time­
consuming, especially as machines become more
compact and complex.

In general, the packaging process can be

divid{~d into four stages as shown in Fig. 1. The
process starts with geometric descriptions of the

individual components, the design space in which

they must fit, as well as a specification of packag­
ing goals. The packaging goals may be thought of

as objective functions to be optimized. An exam­
ple of a packaging goal might be to minimize the
volume of the design space.

Constraint identification is the second phase of
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packaging, in which constraints on the compo­
nents are identified. One of the most basic con­

straints in assembly design is that no geometric

interference be allowed among the components, i.
e., no two solid objects may occupy the same

space at the same time. Some constraints require
that particular spatial relationships between com­

ponents be maintained exactly, i.e., equality con­

straints. Other constraints require that a relation­
ship be maintained only approximately, i.e., an
inequality constraint. In the design of internal
combustion engines, an example of the former is

that the camshaft must be parallel to the crank­

shaft and an example of the latter is that the oil
filter must be accessible to allow for easy mainte­

nance.

Conceptual packaging is a stage in which vari­
ous packaging alternatives are generated and
approximately evaluated. The major task in this
stage is to determine the approximate relative
locations of the components in the design space.

Detail packaging is the final phase of packag­
ing in which one or more packaging alternatives
are selected from the conceptual packaging stage
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Fig. 1 Packaging Process

and refined through more detailed analysis and
evaluation. All constraints, including geometric
interference, are checked at the detail level and an

optimal solution is sought.
As shown in Fig. L packaging is an iterative

process involving continuous refinement of the

problem. When a problem ,appears unsolvable,
the designers may drop or relax some of the

constraints, reshape the components or, if neces­

sary, reshape the design space. Similarly, con­

straints may be added when many configurations
look feasible. During the packaging process,

designers generally refine the problem and meet
the design goals by trading off the quality of the

solution for a restrictiveness of the constraints.
Also, depending on the assembly to be designed,

the most difficulty may occur in the conceptual

packaging stage, the detail stage or both. In the
case of routine assembly designs, the conceptual
packaging effort may constitute only a small

portion of the whole packaging process.
As discussed, constraints in packaging might be

classified into either inequality constraints or
equalities. If an optmization technique is applied
to solve packaging problems, while the inequality

constraints are treated as penalty functions and

included in the objective function, the equality
constraints can be used to reduce the number of

variables (Kim and Gossard, 1991). Moreover the
equality constraints might be used to infer the
initial locations of the components before optim­

izations start. However, since the number of in­
dependent equations generated from the equality
constraints is less than that of location variables,

i.e., underconstrained, infinite number of initial
locations could be generated. Therefore, if design

constraints result in an underconstrained system
of equations, one solution should be chosen
among many by applying proper criteria. On the

other hand, even if the number of independent
equations from equality constraints is as same as

that of variables, the system might still include, in
general, redundant equations. Therefore the
redundant equations must be properly handled.

Not only in packaging but in the process of
general design, it is quite common that some of

the design constraints are given with a s}:Stem of

equations. Often, inherently or by designers'
mistake, the system of equations is ill-determined;

it is underconstrained or overconstrained and/or

it has redundant or conflicting equations. It is
natural that redundant (dependent) equations

appear in the system of equations since design

constraints are frequently given with redundant
information. However, conflicting equations are

mostly result of designers' mistakes and should be
properly modified by designers.

In the case of an overconstrained, there is no
solution unless the number of independent equa­

tions in the system is as same as that of the
variables. Also it is clear that conflicting equa­
tions preclude any solutions and redundant equa­

tions, although not affecting the solution itself,
may cause numerical problem such as singularity

in computational environments.
The rest of the paper is organized as follow.

The second chapter begins with the brief review

of the related work and the third chapter intro­
duces equality constraints. The fourth chapter
addresses the minimum weighted deviation algor­
ithm which utilizes a novel combination of singu­
lar value decomposition (SVD) and Newton­

Raphson methods in order to treat ill-determined
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systems. The fifth chapter describes the implemen­
tation of the algorithm in the assembly modeler
and the last chapter concludes the paper.

2. Related Work

Substantial work has been done to deal with

geometric constraints. Light and Gossard (983)
used row and column operations on the Jacobian
of a system of non-linear equations to detect
overconstrained and underconstrained dimension­

ing scheme. Also, Serrano and Gossard (987)
have worked on constraint management to exam­

ine the system of equations. They used the graph
theory to generate the causality information

among variables. To detect any redundant or
conflicting equations Gauss-elimination tech­

nique was used on the Jacobian.

Pabon (1985) worked on the problem of
redesigning an existing design to meet new
requirements. He has developed a method to
single out one solution out of many by using
Lagrange multipliers for underconstrained sys­

tems. To the solution, the method applies the
criterion that the solution should be minimally

deviated from initial conditions. However, the
method is based on the assumption that there is

no redundant or conflicting equation in the sys­

tems.
Approaches have been developed to determine

the locations of components from spatial relation­
ships. Lee and Rocheleau (987) developed an
assembly modeler computing the locations from

the mating relationships (equality constraints).
From the mating relationships, the system of

equations expressed as the functions of location

variables are generated and the Newton-Raphson
method is applied to compute the transformation
matrices describing the relative locations between
components. In Lee and Rocheleau's case, even
though there are more equations than variables,

the number of variables is as same as that of
independent equations so that an unique solution
is generated. To handle redundant equations, they
incorporated the least square technique into the
Newton-Raphson method.

Mullineux (1987) has done preliminary work on

computing the locations of components from
spatial relationships that include both equality

and inequality constraints. By transforming these
equalities and inequalities into a penalty function,
he formulated the problem as an unconstrained

optimization problem. Also, Witkin et. al. (987)
attempted animation and construction of objects
by formulating equality and inequality spatial

constraints with objective functions, i.e., which
they called energy functions, essentially similar to
the penalty functions in unconstrained optimiza­

tions. A major drawback with these approaches is

that some of the equality constraints may not be
exactly satisfied. Also these approaches may make

a system numerically very stiff.

Kim and Gossard (1991) formulated the packag­
ing task as a constrained optimization problem in
a solid modeling environment. The spatial rela­

tionships are represented as objective functions,
equality or inequality constraints. Unlike Mul­
lineux's approach, Kim and Gossard utilized the

equality constraints to reduce the number of

variables for optimization. In general since the
optimization is numerically sensitive to initial

conditions, it is better to provide "good" initial

locations for packaging. It may be ideal if the
initial locations can be computed from the equal­

ity constraints. However this computation is a
very cumbersome task because the equality con­

straints are mostly ill-determined so that it
requires special numerical attentions, which are

the main discussion of this paper.

3. Representing Equality Constraints

3.1 Locations of assembly components
In the assembly modeler in this study, there are

two types of components: reference components

and movable components. The components
whose locations are fixed are called reference
components. For convenience, in the discussion
to follow we will assume there is only one refer­

ence component which has an associated refer­
ence coordinate system fixed to it. The compo­
nents whose locations are to be determined are
called movable components. We assume there is
an unique body coordinate system fixed to each of



A Numerical Treatment for III -Determined Systems in Mechanical Assemblies 475

movable components.
Each movable component has six degrees of

freedom: three for translation and three for rota­

tion. The location of a component's body coordi­
nate system with respect to the reference coordi­
nate system can be defined by a location vector:

r= (x,y,z,¢,O, TjJ)

where position is specified by three translational

components, x, y, z and orientation by three
angles of rotation in sequence: ¢(roll), O(pitch),
TjJ(yaw) about the z, y and x axes of the body

coordinate system respectively.
A 4 x 4 matrix describes the homogeneous coor­

dinate transformation from each (movable) com­
ponent's body coordinate system to the reference
coordinate system:

Fig. 2 Locating a disk drive for a personnel com­
puter. Dotted arrows represent DOF in the
directions indicated.

[

c¢cO c¢sOsTjJ - s¢cTjJ

T (r) = s¢cO s¢sOsTjJ + c¢sTjJ
-sO cOsTjJ

o 0
where c and s denote the cos and sin functions,
respectively.

3.2 Equality constraints
Equality constraints can be applied to specify

the relationships that have the highest priority or

that must be satisfied. For example, in the packag­

ing of personal computers, internal floppy disk

drives are usual1y located adjacent to the front
side of the computer cabinet as shown in Fig. 2

(a), so that they can be conveniently accessed by
the user inserting diskettes. In this case, we can

assume that designers give higher priority to the
position of the disk drive in the z-direction than

to the position in the x- and y-directions, as
shown in Fig. 2 (b). While the position in the

z-direction is fixed by an equality constraint, the
position of the disk drive in the x-and y··directions

will be determined by its relationship to other

components in the cabinet, i.e., by packaging
goals and inequality constraints (Kim and Gossar-

3.2.1 Constraints on faces
There are several basic spatial relationships

among components that may be described by

equality constraints on faces. Among the more
important of these relate two planar faces: they
are called the coplanar-plus and coplanar-minus

constraints. These constraints allow two transla­
tions along the axes defining the plane and a

rotation about an axis perpendicular to the plane.
Coplanar-plus: Two planar faces, f1 and f2, as

shown in Fig. 3 (a), satisfy the coplanar-plus

constraint if two points, PI and P2 on the faces f1

and t~, respectively, are on the same plane, and the
unit surface normal vectors of the faces f1 and f2

are in the same direction. The condition that the
two points PI and P2 be on the same plane can be
formulated as:

c¢sOsTjJ + s¢cTjJ x~]
s¢sOcTjJ - c¢sTjJ (2)
cBcTjJ

o 1
d, 199\). However it should be noted that in
general the original location of the disk drive in
the form of a CAD database is different from the
one shown in Fig. 2 (a) satisfying the adjacent

constraint. Therefore before the optimization
starts, computation which positions the disk drive

from an arbitrary location to the one in Fig. 2 (a)

is required so that it can be served as initial

conditions.
The concept of the equality constraints can be

applied to assembling a mechanism with compo­
nents by specifying lower-pair mechanisms such

as spherical pairs, plane pairs, cylindrical pairs,
etc. Among these we like to discuss the con­

straints applied to planar faces and characteristic

lines.

(b) Front view(a) Top view
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where TI and T2 are the transformation matrices

locating the components with respect to the refer­

ence coordinate system,

nl=[ nix nly nIZ]T and

nz=[ n2x n2y nzz]T

are the unit normal vectors of faces f1 and f2

defined with respect to the body coordinate sys­

tems, and

PI = [ PIX PlY PIZ ]T and

pz= [ Pzx PZy Pzz Y
are the points on the respective faces also defined

with respect to the body coordinate systems.

The condition that the unit normal vectors of

the faces fl and f2 be in the same direction can be

formulated as:

Eq. (3) yields one independent equation, while

Eq. (6) yields two independent equations. In

other words Eq. (3) constrains one translation

and Eq. (6) constrains two rotations. Therefore,

three equations can be derived from the

coplanar-plus constraint, leaving three degrees of

freedom for one component relative to the other

(a) (b)

(a) Coplanar-plus: 3DOF
(b) Coplanar-minus: 3DOF

Fig. 3 Constraints on faces. Dotted arrows represent
DOF in the directions indicated. For sim
plicity the body coordinate systems are not
displayed.

as shown in Fig. 3 (a).

Coplanar-minus: The coplanar-minus con­

straint is similar to the coplanar-plus except that

the direction of the normal vector is opposite:

Three independent equations can also be der­

ived from Eqs. (3) and (7). Similar to coplanar­

plus, Eq. (3) constrains one translation and Eq.

(7) constrains two rotations, leaving three degrees

of freedom for one component if the other is fixed,

as shown in Fig. 3 (b). Coplanar-minus con­

straints can be applied when two components

need to be in contact. Note that the contact

between the two faces cannot be ensured with

only one coplanar-minus constraint because Eqs.

(3) and (7) were derived for an infinite plane.

For convenience, whenever a coplanar-plus or

coplanar-minus constraint is specified between

two faces, we will refer to them as mating faces.

3.2.2 Constraints on characteristic lines
There are several basic spatial relationships

among components that may be described by

equality constraints on characteristic lines.

(a) Parallel: 4DOF (b) Coaxial: 2DOF

Fig. 4 Constraints on centerlines. Dotted arrows
represent DOF in the directions indicated.
For simplicity the body coordinate systems
are not displayed
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Among the more important of these are the paral­
lel and coaxial constraints which relate two
centerlines.

Parallel: The parallel constraint is met by two
components if, as shown in Fig. 4 (a), a centerline

of one component is parallel with a centerline of
the other, that is, the cross product of the two
vectors representing the two centerlines is equal to
the zero vector:

on the centerline of the other or vice versa, while
Eq. (8) still holds. In this case, the distance
between the two centerlines becomes zero. The

zero distance condition can be expressed as:

or

(IO)

(II)

Fig. 5 Slot and key

3.3 III-Determined systems generated from
the equality constraints

In this section, we like to discuss the three

classes of ill-determined systems generated from
equality constraints. Consider the slot and key
example in Fig. 5. Suppose the location of the slot
is fixed so that six DOF of the key are the only

variables. First, assume one coplanar-minus con­

straint between fl,1 and f2,1' This yields three
independent equations in six variables as shown

in Eqs. (3) and (7). Therefore three of the six

[

P2X - PIX] [P4X - PIX] [0]
TI PZY= PlY X T

2
P4Y= PlY = 0

P2Z PIZ P4Z PIZ 0
000

Eq. (1 I) yields two independent equations, just

as two equations have been derived from Eq. (8)

for the parallel constraint. Therefore, a coaxial

constraint yields four independent equations and
leaves two DOF for one component. The coaxial

constraint can be applied to a cylindrical fit
between a shaft and a bore. Note that Eqs. (8) and
(II) do not ensure that two cylindrical faces will

be in contact or that the shaft will fit into the bore

without interference.

(8)

Two independent equations can be derived
from Eq. (8), leaving four DOF for one compo­
nent. The parallel constraint is useful when orth­
ogonality for the directions of components is

desirable. In general, many components in a
mechanical assembly are located such that the
directions of centerlines are orthogonal. Two
main reasons for this are to meet structural

requirements of the mechanism of a machine and
to make the machine easy to assemble and disas­

semble.
Coaxial: The coaxial constraint is a special case

of the parallel constraint. The parallel constraint
expressed by Eq. (8) still holds, and, in addition,
the distance between the centerlines is zero, as
shown in Fig. 4 (b). This is similar to the right
circular cylindrical pair that allows a rotation
about the cylinder axis and a translation along
the axis. This constraint can be rephrased as if

one of the two points P3 and P4 in Fig. 4 (b) lies

where TI and Tz are the transformation matrices
locating the components with respect to the refer­

ence coordinate system. PI and pz define the
points on the centerline of the bore relative to the

body coordinate system and are given by:

PI =[ PIX PlY PIZ]T and

PZ=[ P2X PZY pzz Y (9)

Similarly, P3 and P4 define the points on the
centerline of the cylinder relative to the body
coordinate system and are given by:

P3 = [ P3X Pay P3Z ]T and

P4 = [ P4X P4Y P4Z ]T
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f(r) =0

4. Minimum Weighted Deviations

Fig. 6 Many locations of the disk driver from one
coplanar-minus constraint.
Dotted squares illustrate many locations that
satisfy the constraint.

(b)(a)

disk drive

proposed to treat all the three classes in the above.

To the other classes of problems not introduced

in the above, the algorithm can also be applied

such as pointing out conflicting equations, if any,

among the system of equations. In addition it can

generate a solution from overconstrained systems

in the least-square sense. Details on these are

omitted for the sake of brevity and will be the

subject of a separate paper.

where f is an m-dimensional function vector, and

r is an n-dimensional variable vector, represent­

ing location variables of movable components.

Since n > m, i.e., f is an underconstrained sys­

tem, it has an infinite number of solutions so that

we may choose one of them by imposing some

criteria. For example, as shown in Fig. 6 (a), if

one coplanar-minus constraint IS specified

between the disk drive and the front side of the

computer cabinet, then the system of equations

generated from the coplanar-minus constraint is

underconstrained and all locations of the disk

drive shown with the dotted lines in Fig. 6 (b) can

First, we introduce a case in which a system of

equations is linear and then extend it for a non­

linear case (Note that equations generated form

equality constraints are nonlinear). Our deriva­

tion extensively uses the concept of SVD (Strang,

1988; Press et. aI., 1986).
Suppose that the following system of equations

has been derived from equality constraints

variables are free. This is consistent because

physically we can see that three DOF are left: two

translations and one rotation. Clearly the system

is underconstrained and there exists an infinite

number of solutions.
Then let's add one more coplanar-minus con­

straint on f1,2 and f2,2' Since each coplanar-minus

constraint yields three equations, now we have a

total of six equations in six variables. However

this is inconsistent because the key can still slide

in the slot, implying that one of the six equations

is redundant. Here again there is an infinite

number of possible solutions.
Finally, one more constraint is added, a

coplanar-plus constraint on f1,3 and f2,3, thus

removing any DOF for the key with respect to the

slot. Since the coplanar-plus constraint also intro­

duces three equations, we have a total of nine

equations for six variables, of which three are

redundant. Therefore, in this case, there will be an

unique solution. From the example, we can con­

clude that even though equality constraints are

specified consistently, there may still be redun­

dancy in the equations.

It can be generalized that if there are no con­

flicting constraints and no overconstrained ones,

then inferring locations from equality constraints

can be divided into three classes:

1) no redundant with an infinite number of

solutions

2) redundant with an infinite number of solu­

tions

3) redundant with an unique solution

In general, most packaging problems fall into

Classes 1 and 2. An algorithm exists for an

underdetermined system that selects, from among

an infinite number of solutions, the solution that

has the minimum weighted deviation from initial

conditions (Pabon, 1985; Assada and Slotine,

1985). However, this algorithm requires the
assumption that there are no redundant equa­

tions. Therefore, the algorithm can be applied

only to Class 1. Class 3 is a special case in

packaging because no DOF remain. Extensive

work has been done on this type of problems by

Rocheleau and Lee (1987).
In the following chapter an algorithm is
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Wr ~ 2;r ( )
U;;~ order of design space's size 14

(16)

(18)

(20)

(21)

A" r'=b'

A'=A' W- 1
, r'= W . (r- r O

) and

b'=b-A'ro (19)

A'= U' D . yT

where

where DT is the pseudo inverse of augmented

matrix D. One of powerful features of SVD is
that r'+ whose magnitude is the minimum length
can be simply obtained with the pseudoinverse
A'+ in Eq. (21) and given by

r'+=A'+ . b'= Y • D+' U T • b' (22)

Now Eq. (16) can be modified by inserting W- 1 •

W between A and (r- rO) since W- 1 • W = I
identity matrix and results in

A' W- 1
• W· (r--rO)=b-A· rO (17)

which can be expressed in the more compact form

The theory of SVD says that any m X n matrix
whose number of rows m is greater than or equal
to its number columns n, can be factored into

(Press et. aI., 1986):

where U is an m X n column-orthogonal matrix,

D is an n X n diagonal matrix with positive or
zero elements and V is an n X n orthogonal

matrix. Since the Press et. al.'s SVD algorithm
(1986) hired for this study requires m?:. n,

before computing Eq. (20), if m< n, then aug­
mentation must be done on A' until it is filled up

to be square with rows of zeros underneath its m
non zero rows. Similary augmentation is required

on b' with zeros. It should be noted that this
augmentation process is essentially interpreted as
that( n - m) redundant equations are placed into

the original system of Eq. (18). These redundant

equations will be numerically taken care of dur­
ing the computation of the pseudoinverse

of A' (Press et. aI., 1986; Strang,
1988). For simplicity, during the rest of the dis­
cussion, let's assume that Eq. (19) already repre­
sents the augmented expression. Suppose the SVD

of A' can be expressed as Eq. (20) then the

pseudoinverse of A' is

(3)

(5)A • r- b=O or A • r= b

where A is an m X n constant matrix, and b is an
m-dimensional constant vector. Eq. (15) can be
rewritten by subtracting A . r O from both terms

and yields

be a solution. To choose one solution, it may be
desirable to apply the criterion that the solution
be minimally deviated from the initial location of
the disk drive. With this criterion, the solution is

the location of the disk drive shown with solid
lines in Fig. 6 (b). This criterion is ideal for a
computer-based packaging tool because, for

example, if the designer sets a component's initial
location near a mating surface, then the algorithm

automatically places the component at a minimal­
ly deviated location where the equality constraint

is satisfied (Later for detail packaging the
minimally deviated location could be used as the

initial conditions and further optimizd along the
horizontal direction while maintaining equality

constraints (Kim and Gossard, 1991).
The criterion is modified and formulated in the

more general form: find the solution that mini­

mizes the ~eighted deviation from the initial
locations of the movable components, rO, i.e., find
the solution that minimizes

where W r and u!t are weighting factors for rota­
tion and translation variables respectively.

In linear cases, the function vector f of Eq.
(2) can be written as

where W is a diagonal matrix of weighting fac­
tors. It is very important to introduce the weight­

ing factors into packaging in order to increase the
convergence of a pseudo Newton-Raphson

method. Since the location vector r includes

translation and rotation variables, the elements of
the vector have two different units; length (meter)

and angle (radian). To improve the convergence,

we need to rescale one unit with respect to the
other unit such that an optimal ratio between two

weighting factors for translation and rotation
variables is
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Substituting the primed variables with expression
(19) gives r+, with which IW(r+-rO)lls mInI­

mum

r+=rO+ W- 1 • V' D+' U T

'(b-A'rO) (23)

From the derivation for the linear case it can be
seen that SVD eliminates the problem of under­

constrained systems as well as redundant equa­
tions. At this point it should be pointed out,that
Eq. (23) also provides the minimum length solu­

tion for overconstrained systems (Press et. aI.,

1986; Strang, 1988). In this case the augmentation
for A' is not needed.

Second, with the concept of SVD, the nonlinear

case can be solved iteratively using a pseudo
Newton-Raphson method. The function vector is
first linearized at the current locations of the

iteration no. k, and a solution to the linearized

problem is found. In this case, f is linearized as

f(rk++~r+)=f(rk+) +Jk • ~r+ (24)

where rk + is the current locations of the movable
component at iteration no. k and ~r+ is the

increment vector defined as

(25)

and J k is the m X n Jacobian matrix evaluated at
rk +, i.e.,

. ( aji(r) )}k' ,= --
l,J orj T=Tk+

i=l,m ; j=l,n

Unlike the linear case, the objective for the non­
linear case is to find the increment vector ~r+ for

which

f(rk++~r+)=0 or
J k • ~r+=- f(rk+)

and minimizes

(28)

Now the equation has the same form as linear
cases and therefore, using SVD, we obtain the

new current location, rk+l+' which minimizes

IW • (rk+l + - rO) I
rk+l+= rO+ W- 1

• V· D+ • U T

• [-f(rk+) +Jk(rk+-r°)j (29)

where, similar to the linear case, V, D+ and U T

are computed from J k with SVD. The vector
function f is then linearized at the new current
locations and the method is repeated. The iter­

ative process ends when the norm of the incre­
ment vector ~r+ is less than the specified toler­

ance.
Similar to the most of iteration approaches

based on the basic Newton-Raphson method, the

initial guess of rO in Eg. (28) influences not only
the convergence rate of the algorithm but also the

convergence success to the global minimum.

5. Results

The algorithm introduced in the paper was
implemented as a prototype system on IRIS-4D

70/GT. The system allows the users to inter­
actively specify equality constraints on solid

models and returns the minimally deviated loca­
tions.

Figure 7 illustrates one of Class 1 examples as
discussed in section 3.3. In this case, there is one

coplanar-minus constraint for each bore and base
components. Therefore there are three indepen­
dent equations for six variables, an undercon­

strained system. The bore is located on the base

by minimally deviating from the initial location,
as shown in the lower right of Fig. 7.

Figure 8 shows Class 2 as discussed in section

3.3. There is one coaxial constraint specified to
the centerlines of the bore and shaft components.
In addition, one coplanar-minus constraints is

added between the faces of the shaft and the bore.
Therefore total seven equations can be generated:

Fig. 7 Locating the bores. An example of Class 1
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four from the coaxial and three from coplanar­
minus. However still one DOF is left because the
shaft can slide through the holes. In other words,

two out of seven equations are redundant so that
still an underconstrained system. The result is

shown in the lower right of Fig. 8.
Finally Fig. 9 shows one of the Class 3 exam­

ples. Two coplanar-minus and one coaxial con­

straints are given to each bore and bolt compo­
nents. In this case, total ten eq uations are generat­

ed from the constraints and four of them are
redundant. This is a complete system in a sense

that the unique solution may exist. Therefore the
concept of minimum weighted deviation is not
necessary but the pseudo Newton Raphson

method can be still applied. The result is dis­
played in the lower right of Fig. 9. The computa­
tion time used to solve each of the three examples

ranged from one to five CPU seconds on IRIS-4

o 70/GT.

Fig. 8 Locating the shaft. An example of Class 2

Fig. 9 Locating the bolts. An example of Class 3

6. Conclusions

Several spatial relationships in packaging were
introduced and formulated as equality con­
straints, which resulted in ill-determined systems.
To treat these ill-determined systems of equations

a pseudo Newton-Raphson method was devel­
oped by utilizing the concept of singular value
decomposition. To select one solution from the

system, the concept of minimally weighted devia­
tion was used. The solution, which is the location
of each component, may be the final location in

an assembly or can be served as an initial condi­
tion for further optimization in packaging.
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